

UDAP WHITEPAPER

Page 1 of 48

Universal Decentralized Asset
Protocol(UDAP)

Tokenizing Anything

A White Paper

Version 0.8

UDAP Foundation, http://udap.io/

Last updated: 8/20/2018

Main contributors: Bing Ran(bran@udap.io), Li Zhang(lzhang@udap.io)

Revision Notes:

• 8/20: updated architecture and some implementation details. There have been some
significant changes and development in the most critical areas, such as state channel
systems, for UDAP to be successfully adapted at scale by projects. We believe what we
present from this version on is a lot more solid and concrete.

UDAP WHITEPAPER

Page 2 of 48

1. Executive Summary
UDAP is a blockchain-based asset protocol that sits between applications and public blockchains to
provide Restful APIs and an "Asset Wallet" for application developers to create powerful blockchain
based applications without writing any smart contracts.

In what we call a "Asset Oriented Programming" model, app developers take advantage of the
traditional Internet application architecture and use UDAP as a layer of

1. asset tokenization;
2. transaction notarization; and
3. contract adjudication in case of dispute.

Technically UDAP provides multiple modules to speed up app development, such as:

1. Token service, to manage the full life-cycle of asset-backed crypto-tokens. Applications can
immediately register token-based assets on chain and offer built-in marketplace to their
customers.

2. State channels service, to allow applications to conduct transactions mostly offline and
secured by public blockchains, such as Ethereum.

3. Data obfuscation service, to hide the ownership of assets, using Ring Signature
technology.

4. Secure content distribution for digital content assets, using Proxy Re-Encryption
technology.

5. Exchange service, for decentralized asset trading, including app-currencies and asset
tokens.

6. Universal wallet for versatile mobile user interface to deal with any token-backed assets
that UDAP has helped to maintain.

UDAP WHITEPAPER

Page 3 of 48

UDAP implements state channel technology to solve some of the most challenging issues with
developing and running Blockchain-based applications:

1. Scalability: blockchains only can do that much of scalability because it needs to balance
between factors of decentralized security, data liveness and finality. Using blockchain blindly
as a data store and generic computing platform would not scale. State channel technology
treat blockchains as the dispute adjudication layer, or court system that usually is not
involved in the minute-by-minute operations, but only plays its role when contracts need to
be enforced and critical assets need to be secured.

2. Cost: blockchain transactions are expensive, many thousands times more expensive than
centralized architectures. State channel allows transactions to run locally off blockchains,
thus carries a cost model comparable to traditional Internet applications.

3. Privacy: data on public blockchains is public by definition and open to any curious eyes.
Some applications may choose to keep the transactions in private unless the users choose
to go to public blockchains for higher level of assurance and interoperability. Even in the
case of going to blockchain, UDAP provides technology to let users control the visibility of
their assets.

4. Responsiveness: dApps as most people have experience with are slow-paced and usually
are an order of magnitude slower than the commercial Internet applications that people have
been used to. State channels would enable blockchain supported applications to offer best
possible UX together with unique features of decentralized ledgers.

To accomplish these promises, UDAP on the backstage provides a set of smart contract (initially
based on Ethereum) templates that is configured by applications before deployment and at runtime.
We believe that the automatic templating system can cover 90% of regular application use cases.

2. Background
There is this movement called "Tokenizing Everything":

• Crypto tokens represent shares of right, access to services, voting power, real world financial
assets, etc.

• Tokens serve as accounting units in bookkeeping and payments.
• Tokens eliminate the requirement of intermediaries in many trading scenarios thus simplify

and expedite the trading process at very low cost. Fungible tokens are very easy to trade en
mass, while none-fungible tokens can help to track the asset flow in an economy and to help
people understand the dynamics of the economy.

• In short, crypto-tokens are the private money for applications.

Tokens have been used in crowdfunding a new wave of innovative applications based on blockchain
and related technologies. It has disrupted the startup model based on VC funding. On one side
startups can receive funding much earlier in their product development. On the other side, everyone
can invest in projects they believe in and gain the potential for investment return which used to
belong to the privilege of so called "accredited investors".

Tokens are the tickets to the next wave innovations.

In the beginning, there was Bitcoin, as touted the "digital cash" system.

UDAP WHITEPAPER

Page 4 of 48

But adopting Bitcoin beyond crypto-currency has proved to be difficult because it is first and
foremost designed to work as a fungible currency system; and lack of smart contract support has not
been helpful either.

Ethereum has emerged from the crowd initially as “programmable money”, then as a general
blockchain based “world computer”.

The most challenging issue posed to Ethereum is how to represent the "values" beyond currencies.
As of today, like almost all the other open ledger platforms, Ethereum is most about handling digital
currency transfers, as Buterin put in one of his podcast in early 2018:

"The very first vision was basically a general purpose platform for financial contracts. If X happens
then send $5 to account Y, if Z happens send $5 to account B. That was basically what I thought
Ethereum would be for"[4]

Ethereum’s model of "asset" is primitive, as the account carries a balance only. In spite of the effort
of standardizing non-fungible tokens, such as ERC721 and derivatives, there is still huge room for
improvement that UDAP can contribute to.

The three-year-old smart contract in Ethereum, though having attracted vast number of development
teams to deploy applications on the platform, is far from being mature and productive:

• Limited in language features.
• Slow performance. The EVM is not really a modern virtual machine like JVM or V8

JavaScript engine. It’s an interpreter that parse the smart contract opcode and run the
underlying supporting libraries. The EVM is at least an order and slower than regular system
programming languages. The total throughput of the blockchain is directly impacted by the
slow performance of the virtual machine. There are many reasons that faster and mature
virtual machines cannot be used in the current version of Ethereum. A lot of efforts have
been made in development to enhance the performance of the virtual machine.

• Large attack surface. The general purpose computing power in the current version of EVM
has rendered itself vulnerable to many security breaches, as documented by Making Smart
Contract Smarter[5]. It's very hard for relatively inexperienced programmers to get any smart
contract beyond "Hello world!" right. Considering the smart contract are handling millions of
dollars of assets, customers would take a huge risk in moving forward with a strategy
centered on smart contracts.

If we can draw some analogies between web application development and blockchain application
development, smart contract is to blockchain development what CGI is to web app development.

Everything is rather young.

3. The Goals
Our ultimate goal is to build the Internet of Assets. Its value proposition has a clear boundary, and
includes the following concrete deliverables:

1. Develop an asset protocol through understanding the "assets" in our world from a blockchain
perspective, and create abstraction of the general behaviors of assets; Define convenient
APIs for traditional vertical applications to integrate with blockchains, which would not require
application developers to have a deep understanding of blockchain and decentralization
technologies.

UDAP WHITEPAPER

Page 5 of 48

2. Provide a reference implementation of UDAP protocol, on top of Ethereum initially. We
abstract the most central part of decentralized computing, decentralized storage technology
and decentralized messaging mechanism into a concise and effective API.

3. Implement a Universal Asset Wallet(UAW) for end-users. The UAW will capture the most
useful interaction patterns with assets that allows users to store, copy, transfer, sell/buy, and
trade a variety of assets deposit from third party applications in one place. Such a design for
third-party application development, in fact, is a very favorable news, because the third-party
platforms can focus on the current core business logic without having to figure out how to
build their own assets blockchain and user Interaction.

4. Engage cloud service partners to offer Asset Blockchain as a Service (ABaaS) so that
organizations can easily create their own private or consortium asset chains that can connect
to the UDAP public chain for value exchange.

5. Build a global C2C marketplace to enable asset trading and exchange without
intermediaries.

6. Support business to transform to token economy as a technology enabler through

• a highly scalable architecture that allows for linear scalability and supports thousands of
applications and near one-second response with finality, with a total throughput of 10k~100k
TPS.

• an end-to-end privacy protection mechanism that may handle highly sensitive asset
information for their customers.

• a unique security model to reduce attack surface.

4. Value Proposition
For app developers:

1. Great decentralized features without investing heavily in underlying technologies.
2. Fast, cheap and secure integration with public blockchains, without specific lock-in.
3. Great user experience with the UDAP wallet.
4. App-economy with in-app currency and asset tokenization and trading capability.

For public chain vendors:

1. Great tool to attract developers to build new applications.
2. Easier integration with "legacy" Internet applications.
3. Less burden in supporting developers.

5. Asset Protocol
A protocol is a specification of and a normative guide to the exchange and communication of
information between and within systems. UDAP's asset protocol regulates how asset are presented,
stored, communicated and interacted on the blockchain, how authenticity of assets is verified, and
how consensus is reached.

The following diagram demonstrates how an application is integrated with Ethereum through UDAP.

UDAP WHITEPAPER

Page 6 of 48

In the middle of the diagram is the UDAP layer, which offers asset model implemented in pre-built
contracts. On top of that it offers token service and state channels for managing application assets
efficiently and securely at low cost.

We start with the asset account model. We present two lines of asset models, based on ERC721
and UDAP Singular respectively.

5.1. On-Chain Asset Model, based on ERC721
Traditional ERP systems have established their asset models based on centralized storage and
computation. The asset model is an abstraction of the assets created by their issuers, which governs
how the systems manage the attributes, operations, and security of assets. Unlike traditional ERPs,
UDAP's asset model focuses on an on-chain standardization of the description, interaction, security,
privacy, and authenticity of assets.

Why assets need to be tracked and managed on the blockchain? In general, Crypto assets have the
following advantages over digital assets (in this case, traditional ERP-managed assets):

1. Clear ownership: The rights and interests of asset issuers, asset owners and transaction
signers can all be clearly defined and cryptographically protected. Asset owners can easily
provide irrefutable proof of their rights and interests; without the consent of the transaction
signers, the assets can not be exchanged and traded on the blockchain; meanwhile, asset
issuers have the rights to determine some of the basic attributes of the assets, for example,
an asset issuer can restrict the transfer and trading of assets.

2. Information Permanence: Digital assets requires a permanent storage to manage their
lifecycle. The advent of blockchain and decentralized storage finally gives us confidence that
we can save information for a long time.

UDAP WHITEPAPER

Page 7 of 48

3. Anti-counterfeiting and anti-tampering: Once the assets are on the chain, the relevant data
and transaction records can be effectively protected. Anti-counterfeiting and anti-tampering
goals can be achieved, and thus moral hazard and financial risks can be reduced.

4. Liquidity Demand: The relationship between value and liquidity is inextricably correlated.
Liquidity is the term used to describe how easy it is to convert assets to cash. The more
liquid the assets are, the easier their values are to be recognized. So liquidity has a very
important influence on asset's value. Money, as medium of exchange, has a very high
liquidity. In facet, it is the most liquid asset compared to everything else. Assets with fair
liquidity includes cash equivalents such as stocks, bonds and options. And assets such as
houses, cars, or farms, factory equipment, etc., have relatively low liquidity and are difficult to
value. Therefore, their market values may differ significantly. Traditionally, liquidity and value
realization are implemented through intermediaries like eBay and Taobao, however, through
tokenization blockchain has more potential on liquidity optimization.

In addition to the above requirements, privacy is also a mandatory need that crypto assets must
meet.

Most of the so-called crypto assets in current blockchain world are aimed at a special kind of
fungible assets, that is, crypto-currency. Blockchain-based application protocols or platforms are
mainly to facilitate the creation, distribution and exchange of crypto assets. Protocols that govern
crypto-currencies include ERC20 and some of its simple extensions. For example, one famous third-
party trading protocol for fungible assets is 0x protocol. This protocol assumes that digital currencies
have been fully distributed among different owners, and that the problem this protocol addresses is
to become a decentralized digital asset trading venue, especially for transactions between fungible
assets.

Various efforts have been put on standardization and specifications of non-fungible assets, such as
ERC721 protocol, which was implemented in the popular CryptoKitties game and its various clones.

UDAP defines a conceptual model based on the analysis and abstraction of various real-world
assets in combination with efforts and achievements by MediaChain[9], Digix[10], BankEx[11] and other
blockchain projects[12][13]:

UDAP WHITEPAPER

Page 8 of 48

This on-chain asset model defines assets and related objects, as well as the relationships between
these objects. This asset model is compatible with ERC721 but offers a richer set of attributes and
operations as described below.
5.1.1 Asset
Anything that is capable of being owned or controlled to produce value, is considered asset. For
example, goods, services, trademarks, securities, warehouse receipts, purchase agreements,
licenses, copyrights, music, videos, games, loyalty program points, game equipment, event tickets,
collectibles and other physical assets and digital assets. Currency (including cryptocurrencies) is
also an asset. When you see "asset" in the white paper of a blockchain project, it most likely refers to
cryptocurrency.

Assets have attributes. Some common attributes, for example, asset identifier, namespace, issuer,
fungibility, transferability, etc., are determined by asset issuers and can not be modified after assets
are issued. Other attributes, such as name, description, owner, and states, can be modified during
the life cycle of assets. Based on the fungibility of assets, UDAP presents a hierarchical model as
described in the following diagram, which defines a standard interface, an abstract type that provides
basic attributes and operations, and multiple derived asset types.

UDAP WHITEPAPER

Page 9 of 48

The UDAP asset protocol itself does not specify any implementation details, however, to better
describe the model Solidity is used to illustrate the components and their relationships. We may use
a more implementation-neutral interface description language to describe the component model in a
later version of the protocol.
contract Asset is ERC721 {

 event AssetCreated(address indexed _asset, uint indexed _id);

 event AssetTransferred(address indexed _to, uint indexed _id);

 event AssetDestroyed(uint indexed _assetId);

 function id() public view returns (uint);

 function issuer() public view returns (address);

 function owner() public view returns (address);

 function namespace() public view returns (bytes);

 function transferrable() public view returns (bool);

 function fungible() public view returns (bool);

 function metadataHash() public view returns (bytes);

 function transfer(address _to) public;

 function destroy() public;

}

The asset component described in the component model have the following attributes:

• Asset Issuer

An asset issuer in UDAP refers to the address of a UDAP account that issues and registers
assets on asset blockchains. This is a immutable attribute.

UDAP WHITEPAPER

Page 10 of 48

• Asset Owner

An asset owner refers to the address of a UDAP account that owns crypto assets registered
on the asset blockchains.

• Fungibility

Fungibility refers to interchangeability of assets with the same amount and of the same type. Based
on asset fungibility, assets are usually classified into two categories: that can be replaced and that
can not be replaced. In the asset model, the two types correspond to FungibleAsset and
StandardAsset, respectively. An non-interchangeable asset means that although both individual
assets have similar attributes and external behaviors, their possession is not replaceable for a
particular owner because they have different identities. This is analogous to the fact that although
both have iPhones, there is no substitute between an iPhone and another iPhone because each
iPhone has its own unique attributes that make it disappear if the iPhone is switched. Each iPhone
has its own unique phone number and a unique purchase time, so between the two iPhone they are
not interchangeable with each other, at least in most cases.

In the physical world, there are a large number of assets that can not be easily interchanged. For
example, most of the real estate properties can not be replaced during the transaction. Other
examples include financial assets such as stocks and debts, which are non-fungible assets in many
business scenarios.

The most common of what we call fungible assets is money or digital currency (AssetToken in UDAP
term, which is also an ERC20 token). In most cases, one hundred dollar bill is completely equal to
and replaceable with another one hundred dollar bill because the main purpose of using one
hundred dollar bill is to use one of its most prominent attributes, medium of exchange. Although
each bill has some special attributes, such as its unique serial number printed on the the paper bill, it
has no specific significance or influence in most cases. Therefore the two hundred-dollar-bills are
completely replaceable. Another example of fungible assets is commercial goods, such as apples in
a warehouse. Although apples have some special attributes, such as origin, variety, grade, size,
color, etc, however, when we say that we have 600 tons of Yantai-produced first class Red Fuji
apples with a size of 85mm, these 600-tonne apples are traded as fungible assets because the 600-
tonne apples are classified as one group according to industry specific standard. There is no
difference to the buyers in the trade.

One special type of non-fungible assets, which is referred as CompositeAsset in the asset
hierarchical model, is composite asset or asset portfolio. This type of assets typically contains a
number of other assets, for example, asset portfolio in the financial sector, warehouse receipts in the
supply chain, and many asset bundles that require the packaging of different assets as a whole for
trading. Below is the definition of the interface.
contract CompositeAsset is StandardAsset {

 function getAmount() public returns (uint);

 function getAsset(uint idx) public returns (address);

}

• Transferability

The transferability of assets determines whether an asset can be transferred to other
institutions or individuals after being issued. Transfer of asset can be done either by direct
sale or through exchange. If an asset is not transferrable, then its ownership cannot be
changed.

UDAP WHITEPAPER

Page 11 of 48

• Resellability

Resellability is a special attribute that asset issuers can use to restrict the resale of assets.
Although in most scenarios assets are re-sellable, in certain special cases, such as shopping
vouchers, issuers can restrict the resale of vouchers. In this way, the vouchers can not be
transferred or sold after the vouchers have been issued to them, thus limiting the circulation
of such assets in the secondary market and ensuring that such assets are available only to
recipients designated by the issuer.

• Namespace

An asset namespace refers to the naming rules for asset classification and grouping so as to
facilitate the distinction between different assets. Namespaces are commonly structured as
hierarchies to allow reuse of names in different contexts, for example, a warehouse receipt
can be identified via udap://xinong/wr/WR-12345678, where "xinong" is the registered app
name (or chain name), "/wr/WR-12345678" is the namespace id given by the app (or chain)
to identify a warehouse receipt coded as WR-12345678.

• Asset Identifier�AID�

Asset identifiers are unique identification codes set by the UDAP platform for assets and are
automatically created for each asset during asset registration process by a standard
algorithm as follows:
AID = uint(keccak256(issuer_address, namespace, metadata_multihash))

This algorithm generates a unique AID for an asset with its issuer's account address, its
namespace, and the hash value of the asset metadata description file in IPLD[14] or JSON-
LD[15] format. Once AID is generated for an asset, it cannot be modified anymore. Assets
issued by different asset issuers, or assets issued by the same asset issuer but with different
namespace id, or different asset metadata descriptions, will always have different AIDs.

• Metadata MultiHash

It refers to the content-addressable MultiHash value that is generated from asset metadata to
uniquely address the asset's metadata. See 5.1.2 for details about asset metadata.

• Other Attributes

In addition to the above attributes that usually can not be changed once identified, assets
also have mutable attributes that can be updated after issuance, such as the amount of
fungible assets (e.g., 1 kg of gold, or 500 tones of apples), the state of the asset (leased,
unused, listed, etc.), ownership, proof of assets, description, etc.

5.1.2 Asset MetaData
Metadata is commonly referred to as "data about data." In UDAP asset metadata refers to the
descriptive information applied to assets and is defined by asset issuers. The structure and
meanings of these metadata are known to asset issuers and the associated applications. In UDAP,
asset metadata is presented as JSON data in conformity with JSON-LD specification, and is stored
off-chain, while on-chain crypto assets must hold Multihash values of their off-chain metadata. Smart
contracts can obtain the multihash value through the metadataHash() method to address and
retrieve the related asset metadata.
 function metadataHash() public view returns (bytes);

UDAP WHITEPAPER

Page 12 of 48

JSON-LD, or JavaScript Object Notation for Linked Data, describes how linked data is represented
in JSON as a directed graph, and how to represent interlinked and non-interlinked data in a single
document. For example, metadata about a recipe asset can be recorded in JSON-LD format (shown
below) and published to IPFS or other P2P storage. Typically, asset metadata can be encrypted
before posted to P2P storage to enforce data privacy.
{

 "name": "Mojito",

 "ingredient": [

 "12 fresh mint leaves",

 "1/2 lime, juiced with pulp",

 "1 tablespoons white sugar",

 "1 cup ice cubes",

 "2 fluid ounces white rum",

 "1/2 cup club soda"

],

 "yield": "1 cocktail",

 "instructions": [

 {

 "step": 1,

 "description": "Crush lime juice, mint and sugar together in glass."

 },

 {

 "step": 2,

 "description": "Fill glass to top with ice cubes."

 },

 {

 "step": 3,

 "description": "Pour white rum over ice."

 },

 {

 "step": 4,

 "description": "Fill the rest of glass with club soda, stir."

 },

 {

 "step": 5,

 "description": "Garnish with a lime wedge."

 }

]

}

The above metadata can be recorded as a merkle-link on the blockchain so that applications can
address through merkle-link to obtain the relevant off-chain asset metadata.
{"md",{"/","QmdnuRNwdmZzHfHVUMVHZFXKXAe6DjvBvPdKy27HpJUN9H"}}

UDAP adopts a simple method to record only the multihash value on the blockchain which points to
the off-chain metadata. The specification defines how to obtain content-addressed objects through
the hash value.
{"metadataHash","QmdnuRNwdmZzHfHVUMVHZFXKXAe6DjvBvPdKy27HpJUN9H"}

Usually applications need to address each item of metadata to obtain the resolution of the related
data. Therefore, the content-addressable network data model is used to address the asset metadata
through the merkle-path. For example, IPFS DAG's javascript interface (ipfs.dag.put) can be used to
upload metadata of the recipe asset to the IPFS so that each metadata item is available by invoking
"ipfs.dag.get".

Metadata on IPFS as DAG node:

UDAP WHITEPAPER

Page 13 of 48

 ipfs.dag.put(metadata, { format: 'dag-cbor', hashAlg: 'sha3-512' },

 (err, cid) => {

 console.log(cid.toBaseEncodedString())

 // zdpuAz4HbUHTKQbdpnn42Zo4GUsU7yrBpvb2W9BF2NwvBaLn6

 })�

DAG node through merkle-path:
 ipfs.dag.get('zdpuAz4HbUHTKQbdpnn42Zo4GUsU7yrBpvb2W9BF2NwvBaLn6/name',

 (err,result)=>{

 if (err) {

 console.error('error:'+ err);

 }

 else {

 console.log(result.value);

 }

 });

5.1.3 Ownership
The ownership of an asset is a type of asset metadata that tracks who owns an asset. An asset can
have multiple owners. The ownership of assets can be changed over their lifecycle, for example,
when an asset is transferred to another person from current owner, the ownership of this asset is
changed. In UDAP asset protocol, while asset ownership belongs to a type of metadata, UDAP
manages asset ownership as an independent attribute that can be tracked by a smart contract
defined as follows:
contract Ownership {

 function ownerOf(address asset) public view returns (address);

 function ownerOf(address asset, uint asOf) public view returns (address);

}

The above interface gives the caller the capability of obtaining current owner account of an asset as
well as the owner account as of a given time in the past.
5.1.4 Asset State and Lifecycle
Asset states can be used to accurately track assets at a detailed level. In addition to a few pre-
defined asset states such as CREATED, TRANSFERRED, PLEDGED, LEASED, applications can
define and name their own states according to business needs and record asset states on the
blockchain via UDAP.

The life cycle of an asset refers to asset state at different points in time. One of the main functions of
UDAP is to provide asset lifecycle management APIs on the blockchain that allows applications to
track the entire lifecycle of assets from issuance to destruction to meet various business needs.

Asset lifecycle can be represented with a smart contract as follows:
contract Lifecycle {

 // returns current state of a given asset

 function stateOf(address asset) public view returns (bytes32);

 // returns the state of asset at given asOf time

 function stateOf(address asset, uint asOf) public view returns (bytes32);

}

5.1.5 Proof of Asset
Proof of Asset (PoA) is an important concept of the UDAP asset model. It is one of the key elements
in determining the authenticity of assets. It is also a type of asset metadata in the UDAP asset
model, represented as an array of JSON objects in JSON-LD or IPLD format. Each of the JSON
objects defines a proof including name, description, and a content-addressable linkHash value of the
"proof". The "linkHash" represents a MultiHash value that can pinpoint this proof, which may be a

UDAP WHITEPAPER

Page 14 of 48

digitally signed PDF file or a scanned shopping receipt. Proofs are stored off-chain and can be
obtained through the metadata's merkle-path.
"proofs":[

 {

 "name":"Storage Contract",

 "description":"Storage contract for warehouse receipt #123456",

 "linkHash":"QmWwr4ZfeLJfbWNAuCQfefwo1aHtxC5yjyU8C5WG4DYrYe"

 }�

 {

 "name":"Purchase Receipt",

 "description": "Purchase receipt for warehouse receipt #123456",

 "linkHash" :"QmXF4LR4QkuRVh3WQbB56seTX2aPm3Tz7b4Y8heoLAiTkk"

 }

]

Proof of Asset is an optional but important attribute of crypto assets. Usually asset buyers will
require some sort of proofs, however, without a proof an asset can still be traded or exchanged on
the market. More discussions about Proof of Asset can be found in 5.3.

Proof of Asset may have different forms in different user cases. For example, in the supply chain
warehouse environment, a warehouse receipt is a proof to demonstrate the authenticity of the
assets. Other relevant proofs include purchase agreement, storage contract, third-party certificates,
etc. Who owns the warehouse receipt owns the rights of goods stored in the warehouse; in the
manufacturing sector, manufacturers can use RFID tags or two-dimensional bar codes to uniquely
identify their products. In this case, RFID of a product is a proof that demonstrates the authenticity of
this product. As such, proofs are data defined and provided by crypto asset issuers to prove the
authenticity of assets that can be either numbers or files or images, all in JSON-LD format.
5.1.6 Tags
Asset tags are keywords or labels that are attached to assets to facilitate identification, classification,
retrieval, and inventory control of assets. Multiple tags can be given to an asset by its issuer or
owner. Asset tags enable applications in a variety of industries to track and monitor valuable assets.
5.1.7 Asset Registry
An asset registry maintains a bi-directional binding between crypto assets and real-world assets on
the blockchain. All assets posted to the UDAP blockchains need to be recorded in the asset registry
by its issuer. At the same time, the asset registry also maintains a number of different data
structures and indexes to simplify search and retrieval of assets. Different institutions or applications
have their own proprietary registry of assets. Asset issuers can broadcast their assets across the
entire network or just to some designated addresses, so that a proprietary registry has access to
assets registered in other registries via listeners. For example, landlords can post rental information
on multiple rental sites simultaneously, and sellers can initiate auctions on both Site A and Site E.
When an asset on Chain A is transferred to an address on Chain B, UDAP must ensure the removal
of this asset from the registry of Chain A, and the addition of this asset to the registry of Chain B.
5.1.8 Account, Wallet, and Identity
Accounts are users' address on the blockchain. A user may have multiple accounts, while an
account may have multiple assets. An asset may be associated with multiple accounts. For example,
an asset can have multiple owners, an issuer, and multiple signatories. An account can also play
different roles in different trading scenarios, e.g., asset issuer, asset owner, or transaction signer.

Asset signatory refers to the account that signature of transactions is required before trading the
asset on the UDAP blockchains.

UDAP WHITEPAPER

Page 15 of 48

An asset wallet, similar to a safe or a deposit box, is a universal wallet provided by UDAP to allows
tracking and management of assets associated to a user's account. An asset wallet can manage
multiple accounts, each associated with multiple assets on the blockchain.

Identity refers to the user's personal or social information, for example, ID card, Facebook account,
e-mail address, phone number and other information that can represent the user's identity.
Blockchain accounts are anonymous, but in some scenarios users have to provide proof of identity
to complete the regulatory requirements for KYC and AML. UDAP, in conjunction with a self-
governed third-party identity management system such as uPort, provides the application with a
mapping of identities to UDAP accounts and asset wallets.
5.1.9 Transactions and Events
Transactions refers to any operation on the assets on the UDAP blockchain. For example, issuance,
exchange, ownership change, minting, recasting, pledge, approval and so on are all transactions.
When a user initiates a transaction on the UDAP blockchain, the UDAP generates relevant events
and broadcasts to relevant listeners, who are responsible for processing the transaction.

5.2. The Singular Asset Account Model
The "tokenizing everything" movement essentially deals with so called "Non-Fungible" asset tokens.
There have been some work done in Ethereum to standardize the representation of such assets.
The one that has got most attention is ERC 721.

ERC721 has gained mild success in adoption, mainly for categorized none-fungible assets such as
virtual assets in gaming. In fact some of the underlying asset manage capability of UDAP middle
layer will be based on ERC721 or its derivatives.

ERC721 has a few issues and limitations:

1. It’s a collection first all, with each element bearing an uint256 ID. There is no concrete object
for each of the element. It’s up to the implementation to maintain a separate data structure to
materialize the otherwise a simple number. The token in ERC721 does not have a home. It's
just an index into a hashmap. We’d say ERC721 is very weak in expressing an element of
token.

2. The addressing of elements is composed of Therefore the absolute address for a specific
token is something like: {ethereum network id}.{contract address}.{token id}. We think it
can be shorter.

3. The API looks complicated since most of the API functions deal with a single token, and the
ID of the token has to be specified each time the API is invoked, such as:

balanceOf(address _owner);

ownerOf(uint256 _tokenId);

safeTransferFrom(address _from, address _to, uint256 _tokenId, bytes data);

safeTransferFrom(address _from, address _to, uint256 _tokenId);

transferFrom(address _from, address _to, uint256 _tokenId);

approve(address _approved, uint256 _tokenId);

setApprovalForAll(address _operator, bool _approved);

isApprovedForAll(address _owner, address _operator);

4. It offers no api to find out all the tokens owned by a specific person. A separate indexing
service is required for enumerating a person’s asset.

5. And all the variants of transferFrom(...)s require a handy manual to remind developers of
there meanings and nuances.

UDAP WHITEPAPER

Page 16 of 48

6. It tried to be ERC20 compatible, but semantically some of the ERC20 functions do not carry
the same meaning for none-fungibles, such as:

balanceOf(...)

approve(...)

transferFrom(...)

7. It does not allow setting operator on individual item. It has to be all or none, therefore lacking
fine control of delegated ownership. In fact adding the operator feature to the protocol has
made it unnecessarily bloated. It should separate the concerns.

8. It has to deal with receivers of either EOA type or contract type. Although the contract
receiver may reject the ownership transfer, EOAs do not have such options.

9. No natural type safely for element tokens. Since each element is just an index number, there
is no type information about it directly. A separate array list must be maintained to keep type
information. Working with the multiple arrays are awkward.

5.2.1 Goals of Singular
UDAP has the vision that

every single thing in the world should have a unique account on the blockchain.

In UDAP we are proposing a new account model specifically to represent a single unique asset in a
very expressive way. We want to achieve the following goals when designing the model:

1. Dealing with single asset token is very intuitive.
2. The API must be clean, simple without ambiguity.
3. There should be strong type safety.
4. Properties of the token can be made as static as possible.
5. Wallet API should be made very simple.
6. It should support using an operator to control the ownership transfer on the real owner’s

behalf.
7. It should support a time-lock mechanism that offer a guarantee of ownership to the receiver

within a defined period of time.
8. It should support simple atomic token swap between two tokens owned by different

accounts.
9. The token should work with state channel mechanisms, which is very important for scalable

applications.

5.2.2. Designs
We call our basic asset contract Singular and the design decisions are:

1. A piece of asset is uniquely associated with a smart contract account. As a result, the full
token identification is the account address, such as /eth-chain-
id/0xa1. The account is the home for the asset.
People can easily scan the information about this token thru public services like Etherscan.

2. The owner of the Singular token must be another smart contract account, named
OwnerOfSingulars. There is no direct way for EOAs to own Singular tokens. This design
largely conforms to Ethereum’s account abstraction model that will be deployed in a future
version of Ethereum.

UDAP WHITEPAPER

Page 17 of 48

3. It should support push ownership transfer and pull ownership transfer patterns. In so called
one-step transfer, the current owner can pass an offer of the token ownership to the receiver
account and the receiver account can choose to accept or reject the offer in the same
transaction. In a two-step ownership transfer, however, the current owner reserves the token
for the next owner in a transaction. The address of the token is passed to the receiver out-of-
band. The receiver issues a separate transaction to accept the offer, once it determines that
the offer is in its interest.

4. Operators. The OwnerOfSingulars account can assign operators to help with ownership
transfers. Having an operator to manage the asset token on the owner’s behalf is a pattern
that has been accepted by some other proposals, such as ERC721 and ERC777. People
have found it convenient in handling token trading. The current token owner can appoint an
operator for the next ownership change. But setting the operators on the token directly is
polluting the token interface.

5. Timelock. When an owner make an offer of ownership to someone else by calling the
approveReceiver() function, there is a required argument for expiry time, during which period
the receiver can take the ownership at will by invoking accept(...)on the token, which will in
turn send a notification to the previous owner for it to any state update it wants, or even chain
to another action. A critical design is that the owner cannot change his mind during the offer
period. This is essentially a time-lock for the transaction. In contrast, neither ERC20 nor
ERC721 or any of their derivatives offers built-in time-locks for ownership trading.

6. A feature is under consideration to provide for fast token swap between two accounts with a
hashlock:

// offer from Alice:

 AliceToken.offerToSwap(BobToken, hashLock);

// Bob takes offer:

 BobToken.swap(AliceToken, hashLock);

Here is the interface definition for Singular:
pragma solidity ^0.4.24;

import "./OwnerOfSingulars.sol";

interface Singular {

 /**

 * When the current owner has approved someone else as the next owner, subject

 * to acceptance or rejection.

 */

 event Approved(address from, address to, uint expiry);

 /**

 * the ownership has been successfully transfered from A to B.

 */

 event Transferred(address from, address to, uint when, bytes32 note);

 /**

 * get the current owner

 */

 function currentOwner() view external returns (OwnerOfSingulars);

 /**

 * There can only be one approved receiver at a given time. This receiver cannot

 * be changed before the expiry time.

 * Can only be called by the token owner (in the form of OwnerOfSingulars account or

 * the naked account address associated with the current owner) or an approved operator.

 * @param to address to be approved for the given token ID

 * @param expiry the deadline for the receiver to the take the ownership

UDAP WHITEPAPER

Page 18 of 48

 * @param reason the reason for the transfer

 */

 function approveReceiver(OwnerOfSingulars to, uint expiry, bytes32 reason) external;

 /**

 * The approved account takes the ownership of this token. The caller must have

 * been set as the next owner of this token previously in a call by the current

 * owner to the approve() function. The expiry time must be in the future

 * as of now. This function MUST call the sent() method on the original owner.

 */

 function accept() external;

 /**

 * reject an offer. Must be called by the approved next owner(from the address

 * of the OwnerOfSingulars or OwnerOfSingulars.ownerAddress()).

 */

 function reject() external;

 /**

 * to send this token synchronously to an AssetOwner. It must call approveReceiver

 * first and invoke the "offer" function on the other AssetOwner. Setting the

 * current owner directly is not allowed.

 */

 function sendTo(OwnerOfSingulars to, bytes32 reason) external;

/// ownership history enumeration

 /**

 * To get the number of ownership changes of this token.

 * @return the number of ownership records. The first record is the token genesis

 * record.

 */

 function numOfTransfers() view external returns (uint256);

 /**

 * To get a specific transfer record in the format defined by implementation.

 * @param index the index of the inquired record. It must in the range of

 * [0, numberOfTransfers())

 */

 function getTransferAt(uint256 index) view external returns(string);

 /**

 * get all the transfer records in a serialized form that is defined by

 * implementation.

 */

 function getTransferHistory() view external returns (string);

}

The following is the interface definition for the OwnerOfSingulars
pragma solidity ^0.4.24;

import "./Singular.sol";

/**

 * A contract that binds an address (EOA/SC) to a list of Singular tokens. The

 * owner account may not have the ability to handle the Singular tokens directly,

 * thus they can take advantage of this contract to achieve the effect.

UDAP WHITEPAPER

Page 19 of 48

 *

 * All the tokens MUST have this account as the owner of them. It's up to the implemntation

 * to ensure the synchronization.

 *

 * The majority of token ownership management takes place in the `Singular` token.

 *

 *

 */

interface OwnerOfSingulars {

 /**

 * get the owner address.

 */

 function ownerAddress() view external returns(address);

 /**

 * to find out if an address is an authorized operator for the Singular token's

 * ownership.

 */

 function isAuthorized(address, Singular) view external returns(bool);

 /**

 * @dev invoked by Singular.accept() to notify the ownership change has completed.

 * The previous owner should remove the asset for the asset list to synchronize

 * the ownership relation with the token.

 * @param token the token that has been sent to a receiver, which MUST be the

 * current owner of this token.

 */

 function sent(Singular token) external returns(bool);

 /**

 * @dev to receive a token that has been assigned to the receiver as the next owner.

 * The receiver must decide to take it or not. If this account decides to accept

 * the offer, it MUST call the `accept()` on the token and return `true` If this account

will not

 * accept the offer, it can ignore the offer by returning `false`;

 */

 function offer(Singular token, string note) external returns(bool);

/// enumeration of the owned tokens

 /**

 * retrieve all the Singular tokens

 */

 function getAllTokens() view external returns(Singular[]);

 /**

 * get the number of owned tokens

 */

 function numOfTokens() view external returns(uint256);

 /**

 * get the token at a specific index.

 */

 function getTokenAt(uint256 idx) view external returns(Singular);

}

As mentioned before, we don't want to squeeze all convenient things into the token API and make it
bloated.

UDAP WHITEPAPER

Page 20 of 48

The operator management is such a case. The OwnerOfSingulars::isAuthorized(address, Singular)
is a function that a Singular can invoke to find out if the current message sender is authorized to act
on behalf of the token owner. The API give great flexibility to create sophisticated permission
schemes.

The following diagram shows how the ownership can chain mutiple contract together to form an
ownership chain:

The owner of the OwnerOfSingulars can be an EOA, or any smart contracts such as a multi-sig wallet.
Flexibility is all there for creative delegation schemes.

Another interesting way to use the above interfaces is to combine the two interfaces to create a
composable token, as shown below:

UDAP WHITEPAPER

Page 21 of 48

This pattern can be used to create a tree of objects that are organized by the ownerships.

Inter-operability with ERC721: With some twicking, Singular can become an element of ERC721
container. Conversely, a Singular can be used to wrap an ERC721 token. More detail to be added
here.

Wallet: the OwnerOfSingular is just such as convenient place for implementing the backend of a
UDAP wallet. Since all the assets are directly enumerable from this account, the API is vastly
simpler than any other wallet API.

5.2.3. Security Analysis
Some Convenient Assumptions:

• UDAP applications users do NOT control the source code of the smart contracts.
• All the smart contracts are created and managed by UDAP operators.
• All the smart contract code will be fully open-sourced and audited before being used in

production.

Smart contracts in general can malfunction or can be attacked by numerous ways.

1. Most of the attacks come from inter-contract invocations, because most of the contracts do
not come from a single source and may contain malicious code in the worse case or
unintended side-effects. The most problematic pattern is synchronous invocations between
untrusted contracts. The untrusted contracts may not do what they are documented to do;
They may not follow the exception handling logic that invokers have expected of; They
sometimes can call back to the same function that they’re invoked from and cause
reentrancy race-conditions. The time-order may be messed up in an indeterministic way.
They may call out to other malicious code and the impact would come up to the topmost
layer in the calling stack.

UDAP WHITEPAPER

Page 22 of 48

2. If coded carelessly, some contracts can go into the state of being dead-locked or live-locked,
resulting in the fund or asset being locked up forever.

3. Integer overflow or underflow can happen and proper checks must be in place to prevent
that.

4. Blind type conversions/coercions may turn disastrous.

5. Gas fee can be exhausted if multiple synchronous invocations are chained together.

6. Funds or tokens may be sent to invalid recipients and get lost forever.

It’s usually suggested that applications favor the pull model against push model to avoid calling into
untrusted code. In the pull model, transaction initiators set up proper conditions in the contract
under his control in one transaction. The transaction counter-party would call into the same contract
to retrieve or update some state in a separate transaction. They usually communicate offline to
agree on the order of actions. The downside of pull model is it requires two separate transactions
and usually requires the attentions of application users by communicating offline. The pull model is
basically an asynchronous model that offer better safety but requires more complicated setup.

In the push model, on the contrary, the transaction initiator call out to smart contracts not under his
control and probably under the counter-party’s control to complete transactions in one-step. This is a
synchronous model that offers faster transaction rate and lower transaction fees, at higher risk of
attack.

Smart contracts can’t truly be trusted unless their source code is available. Just as we would inspect
them line by line in real-world (meaning untrusted) business transactions, applications must
meticulously inspect target smart contracts before invoking any functions on them. Unfortunately
there is no standard introspections for Ethereum implementation of smart contract as of now. We’ll
need to acquire the source code (the contract documents in real world transactions) from the third
parties and use the same compiler and compiler settings to generate the bytecode to compare it with
the online versions. We wish that Ethereum would standardize on some mechanism for contract
verification, but until that happens, we’ll have to follow some tedious steps of code verification.

Aware of most of the vulnerabilities, UDAP has intentionally separated the applications from coding
any smart contracts directly. UDAP provides a suite of standard smart contract templates that can be
configured when the applications are registered with UDAP. There are limited number of ways that
those templates can be customized and all of them have been carefully designed and tested. By
doing this we can eliminate most of the malicious code attacks arisen from untrusted code, and in
the meantime implement the most clean and efficient transaction patterns in the simplest API.

Take the synchronous Singular::sendTo() for an example. The intentions of this function is to
change the owner of a Singular token in one-step. When the function returns the transfer must have
been completed. A naive implementation of this function might have been changing the owner state
variable directly be done with it. In fact the Ownable interface in the Open-zeppelin library gives no
other options than this. There are two issues with this simple but crude approach:

1. No respect to the recipient. Sending tokens to receivers is like sending emails to other
accounts. Most of the traffic of the current email system are attributable to spamming.
Tokens, like messages, can be of no value to some accounts. Sometimes owning something
objectionable might be a liability.

2. The receiving address may be invalid, resulting in permanent token losses.

UDAP WHITEPAPER

Page 23 of 48

UDAP has designed the Singular to adapt to both push and pull token transfer patterns. The core is
the asynchronous offer/accept pattern, which is an interactive process:

1. The sender makes an offer to transfer the ownership of a token to a receiver with
approveReceiver on the Singular token, with a timed lock. The time lock is an

2. The receiver, after leaning the above fact, will verify the content of the contract and the check
the current state, such the current owner, the intended recipient and expiry date. More often
than not, the recipient will also check the metadata associated with token before taking any
further action on the offer. Once everything looks good, the recipient issues accept() on the
Singularto complete the transaction.

The following diagram shows how to transfer a token in a synchronous push model:

UDAP WHITEPAPER

Page 24 of 48

The following diagram shows how to transfer a token in an asynchronous two-step pull model:

As secure as it can be, the pull model requires online/offline arrangement. The process is interactive
and elongated sometimes. In many situations the one-step pushgives users the best experience, with
some degree of safety. The technique that UDAP employs is bridging the above offer/acceptsteps
with a synchronous sendmethod, in the following sequence:

1. aSingular.send(Bob), which internally invokes:
i. approveReceiver(Bob 1min),
ii. send a synchronous message to Bob: Bob.offer(this), which internally invokes:

a. check with blacklist/whitelist and such.
b. Make a call back to the token: aSingular.accept(), which set the owner to

Bob thus conclude the transaction.

The reason the token calls out to Bob contract (an OwnerOfSingulars instance) is to make sure Bob is
a valid recipient and he is willing to take the offer.

Upon careful inspection, the pushmodel does not impose high risk. As long as we make sure the
ownership transfer has been properly authorized, the token is properly protected. The best attack the
recipient can mount to the token is a "grief" attack that spends excessive gas in the offer() function.
This can be alleviated by 1) check the source code of the Bob contract, or 2) make sure the Bob
contract has been deployed by a trusted party, such as UDAP.

Contract verification can be done manually or thru third party services such as that offered by
[http://etherscan.io/].

5.3. Tokenization Services
On top of the asset model, UDAP has defined a service model for asset operations and
management. Common services are exposed to application developers through micro-services

UDAP WHITEPAPER

Page 25 of 48

(REST APIs and WebSockets). Unlike the traditional centralized cloud service model, UDAP
provides a decentralized service architecture. In this decentralized service architecture, the API
gateway and service host are a special type of miners that provide the host container for running
UDAP asset services. The gateway is the entry point for third-party applications to connect to the
UDAP blockchain, and is responsible for automatic routing application requests, and provides
service metering capability as a basis for service charges. At the same time, the nodes that provide
the service gateway and the service container are also rewarded by the network. Hosts providing
asset services need to deposit a small amount of locked-in tokens and need to broadcast their
identities to the UDAP blockchain. UDAP chooses the node serving the service based on the proof
of the node.
5.3.1 User Registration
User registration establishes the mapping between the user space in the application domain and the
user space of UDAP blockchain. User accounts from different applications are completely isolated.
Applications are responsible for registering their user accounts with UDAP blockchain to create a
mapping. See 5.4 for more description.
5.3.2 Application Registration
A UDAP-based application has either an independent asset chain (deployed and owned by
application vendor) or a virtual chain sitting on top of UDAP main chain. These two deployment
settings support both private/consortium and public blockchain configuration. In either case,
applications need to connect to UDAP main chain and register themselves with the Application
Registry on the UDAP main chain. When applications are registered, each application is given a
unique App Id and a unique App Name. App Name is used as the level 0 namespace id of the
managed assets. In the registration process, each application also receives an App Key and an App
Secret that are used to securely connect to the UDAP main chain.

When application prefers a private or consortium configuration for asset lifecycle management, it can
leverage UDAP's Asset Blockchain as a Service (ABaaS) to deploy a private or consortium asset
chain. This UDAP-enabled permissioned blockchain is specific to this application and is by default
automatically registered with the UDAP main chain. Transactions on the app chain are stored locally
in a private ledger on the ABaaS managed nodes. This configuration gives the app chain the
capability of broadcasting asset information to or communicating with other UDAP-enabled chains

UDAP WHITEPAPER

Page 26 of 48

through an Inter Blockchain Communication protocol. If an application doesn't want to have an
independent network, it can choose a virtual private chain configuration, where application's ledger is
stored and managed on the validator nodes of on the underlying main chain.

Note: We will not offer private chain configuration in the near future, since we're going to run UDAP
nodes on top of the public Ethereum chain or similar public chains. Private deployment might be an
option further down the road.
5.3.3 Asset Registration
Assets need to be registered on the UDAP blockchain for applications to query and manage their
states on the blockchain. In the meantime, applications receive asset registration information
broadcast by other applications, enabling cross-application and cross-chain asset transfer and
trading. Assets registration is a two-way binding process between real world assets and crypto
assets. Asset metadata is identified and uploaded to off-chain P2P storage network at this stage,
and a hash value of the off-chain metadata is stored and associated to the crypto assets. In this
process, asset issuers need to make detailed configuration of asset attributes, for example:

• Transferability�an asset can be either transferable or non-transferable. If an asset is not
transferable, the asset is usually a warrant asset. The only meaningful operation is "delivery",
which means that the warrant owner delivers to the original issuer the promised product or
service.

• Sellability�an asset can be either sellable or non-sellable, which defines the ability to be
sold. If the asset is configured to be non-transferrable, the asset is essentially non-sellable.

• Multi-signature requirements: A multiple signature (or multi-sig for short) requirement
represents that a transaction requires multiple approvals from different participants. Multi-
signature addresses and transactions broaden this model by creating identities on the chain
which are managed collectively by multiple parties. UDAP uses “m-of-n” bitcoin-style multi-
signatures, in which a multi-sig address A is defined as: Given n regular addresses, at least
m of the private keys corresponding to those addresses must sign a transaction to perform
an action for A.

5.3.4 Tokenization
The purpose of asset tokenization is to make asset transfer and trading easier. This is a fairly
frequent operation that the asset issuer completes mapping from the real world to the crypto world
after registering a real asset attached to the application context to UDAP. Token issuance allows
assets to be traded in part rather than as a whole. For example, a painting can be tokenized as a
certain amount of tokens through what is sometimes called "tokenization" (sometimes referred to as
"minting,") so that the painting can be sold to multiple owners, where each owns a portion of the
rights and interests of the painting.

As seen from the UDAP asset model, tokens are fungible assets. Fungible assets are usually
tokenized at the time of registration, whereas non-fungible assets are traded as a whole in most
scenarios and therefore do not require the issuance of tokens. It is only necessary for issuers to mint
tokens when they want to trade their assets partially.
5.3.5 Asset Recast
Recasting refers to the process of burning tokens for the rights to redeem goods or services, which
creates new proof of asset for the token owner. This process is usually valid for physical assets in
specific scenarios. This is because tokens themselves do not necessarily have the associated
attributes of physical assets and the tokens are issued by the asset owner to enhance liquidity.

UDAP WHITEPAPER

Page 27 of 48

When the physical asset is in the custody of a third party, the tokens issued by the asset owner may
not always be accepted directly by the custodian of physical assets. Therefore, in many cases,
tokens can not be used to directly redeem physical assets and new crypto assets need to be
generated through the process of "recasting". For example, after Alice registers her 500-tonne apple
on the blockchain to form a crypto asset (crypto warehouse receipt), Alice can issue a token per
tonne. Alice then transfers 100 tokens (corresponding to 100 tonnes of apples) to Bob. After Bob
receives 100 tokens, he can submit the tokens to the UDAP recast contract to generate a certificate
to redeem asset (e.g., bill of lading) and destroy the corresponding tokens. Then Bob can redeem
goods with this bill of lading. After redemption, the related crypto assets (warehouse receipts) are
automatically destroyed on the blockchain to prevent double spending.
5.3.6 Multisig
Multisig is an additional security protection mechanism in the process of asset trading. It refers to the
process that multiple accounts digitally sign the same transaction before it is executed. Only when
required signatures are collected will the transaction be broadcast to the chain. In many scenarios
multiple signatures are required to complete a specific asset operations, for example:

• Registration: For expensive assets, the application may require signatures of the designated
accounts be provided at the time of asset registration in order to prove the authenticity of the
asset. Auditors and witnesses are possible co-signers in this process.

• State Change: Some key state changes may need to be confirmed by multiple parties.
• Trading: Co-ownership of assets requires the signatures of multiple owners when assets are

transferred or sold to a third party.
• Pledging: Pledges usually require multiple approvals to ensure authenticity of assets,

accuracy of price, and security of transaction.
• Asset freeze (��): The asset freeze may require the signature of the court and the parties

involved.
• Asset write-off (��): This operation usually requires the approvals from multiple

supervisors. For example, reimbursement process requires the signatures of direct
managers and CFO to complete expense reimbursement.

5.3.7 Base Coin Issuance
App chains may need to issue their own tokens as utility tokens for users to use their services or as
base coins for pricing managed assets. For example, if a person wants to use event ticketing
application to sell an event ticket, he may need to price the ticket with the base coin and pay the
service fee with the base coin. UDAP supports application to issue base coins just like Ethereum
supports Dapps to issue ERC20 tokens. As base coins are also assets, they can be traded against
UDAP token (UP) or other application-specific tokens through an exchange.
5.3.8 Other Asset Services
In addition to the basic services described above, UDAP provides the following services:

• transfer
• rent
• buy and sell
• C2C trade
• pledge
• auction
• escrow

UDAP WHITEPAPER

Page 28 of 48

• redemption and destruction

5.4. State Channels Service
Let's use the perfect definition of State Channels by Jeff Coleman

The basic components of a state channel are very simple:

1. Part of the blockchain state is locked via multisignature or some sort of smart contract, so
that a specific set of participants must completely agree with each other to update it.

2. Participants update the state amongst themselves by constructing and signing transactions
that could be submitted to the blockchain, but instead are merely held onto for now. Each
new update "trumps" previous updates.

3. Finally, participants submit the state back to the blockchain, which closes the state channel
and unlocks the state again (usually in a different configuration than it started with).

A typical Internet application is composed of multiple user account which contains the user assets
defined in the scope of the application.

The state channels terms, those accounts are state channels. An application's state is the sum of
each user/app state channels.

UDAP provides smart contract templates that are deployed, on demand, to the blockchain once a
new user is registered with an application. These processes are managed by the UDAP nodes. App
developers do not be concerned with the detail. The following diagram shows the relationships:

UDAP WHITEPAPER

Page 29 of 48

The channel service provides services in:

• Receipt custody
• Contract enforcement
• Channel updating
• Withdraw monitoring

Think of it as the legal service for corporations. On daily basis a commercial company does not
involve lawyers for regular transactions. The lawyer prepares standard, enforcible business
contracts to establish the business processes, but they don't get into the detail of each transactions,
until a customer/business partner has problem executing the contract. In a dispute situation, lawyers
would help to collect evidence and present in the court of law. In the world of blockchain, the court of
law is the root blockchain, and in our case, would be the Ethereum chain. The difference between a
court and a blockchain is that a court requires a judge to make arbitration and police to enforce the
verdict, whereas on the blockchains, the smart contract can be made as the adjudicator and enforcer
both at the same time, a tremendous value at a very reasonable price.

Writing enforcible contract is a delicate job. UDAP contract templates handle that, as shown below:

 The application is named Mediabox and contracts are code-
generated from pre-built templates and deployed on demand.

The major contribution of UDAP to app developers is that UDAP gives them the scalable
technologies wrapped in simple API, such as registerApp(), registerUser() and registerAsset().

5.5. Counterparty Risk and Proof of Asset

UDAP WHITEPAPER

Page 30 of 48

All the tokens on the UDAP chain are tied to assets. Tokens and assets are the counterparties of the
bonding. Since we are dealing with real world situations, anything can happen to the assets without
being noticed by the token system. This is the counterparty risk.

UDAP assumes a few basic principles about the authenticity of assets, the counterparty of the token
system:

• Authenticity is not provided by the UDAP protocol.
• Authenticity is only valuable in its application context.
• The authority and authenticity of assets can be confirmed through a mechanism that is

considered to be reliable and adequate by specific applications.

UDAP is a distributed system. It does not have a single operating entity to verify the authenticity of
assets. While asset verification may be done in a distributed and decentralized manner, UDAP
currently does not design such mechanism.

However, if a person claims a crypto asset that he owns on the UDAP network is backed by a real-
world asset, how could he prove this claim? UDAP proposes following schemes and all the
primitives are supported by UDAP:

1�Proofs of Asset

Under normal circumstances anyone can issue assets on the blockchain via an app. At the time of
asset issuance, the issuer has to provide a detailed description about the asset in the form of texts,
images and other media. The issuer may also present some real-world confirmation of the asset, for
example, a certificate of property, an impartial letter, a warehouse receipt, a purchase receipt, and
so on. All of these supporting documents do not necessarily guarantee the authenticity of the assets,
but these additional attributes to a certain extent increase the authenticity of the assets. The specific
scheme is application specific.

2�Guarantee or Insurance

Asset issuers or owners can guarantee the authenticity of the assets by providing some form of
guarantees or insurance.

3�Multi-Sig Protection

Asset issuers can leverage the multi-sig mechanism in the registration process to enhance the
authenticity of assets. In this process, multiple proofs from related parties are usually required.

The first step to enhance the credibility of assets is when assets are mapped from the real world to
the crypto world, which is what we mean by registration. With support of UDAP, a multi-party
signature must be provided when an issuer declares an asset on blockchain. The signature comes
from the current owner of the asset. Other signatures may be obtained from current custodian of the
asset, the notary, and the third party auditor who verify and confirm the ownership of the asset.

If a third-party application considers that the registration of a user's asset is important, it can
leverage the multi-signature mechanism provided by UDAP to allow the relevant guarantor (including
asset custodian, notary and auditor) of the asset during asset registration to submit proofs of asset
and sign the transactions. For example, if a person claims that he owns a gold bar himself, the
application requires that the user must, at the same time as the declaration, submit a gold asset
certificate issued and signed by a custodian that certifies such ownership, as well as the digital

UDAP WHITEPAPER

Page 31 of 48

signatures and associated certificates from other third party auditors. The absence of any of these
digital signatures will result in the denial of asset registration.

4�Escrow

The ultimate value of assets is achieved through circulation. Escrow is a common method of trading
assets between untrustworthy individuals. The owner of an online store may claim to own any
goods. The platform does not recognize the credibility of such claims. Instead it offers a custodian
mechanism that usually holds temporarily assets that are easily deposited by both parties in the
transaction, for example, purchases of ordinary merchandise from an e-Mall, the money paid by the
buyer does not go directly to the owner of the goods, but goes into the escrow contract first, and
then the buyer must confirm the authenticity of the goods after the buyer receives the goods. The
traditional e-commerce platform basically adopts this kind of mechanism. For example, on the
localbitcoin.com[16] platform, the escrowed objects are the commodities to be traded, that is, bitcoin,
while the money to buy bitcoin is paid offline.

5. Staking

An application may choose to require the users to put in a stake in the system before registering the
assets. The stake is in the form of in-app currencies or UDAP tokens. The stake is used as the
collateral in case of malicious behavior.

For those products that are very expensive, the applications may choose to deploy multiple
protection layers, for example, a combination of above mechanisms, which prevents possible
fraudulent activity during asset trading. UDAP provides API for third-party applications to establish a
flexible mechanism to ensure the authenticity of assets and to ensure the reliability of the transfer
process.

5.6. Identity Management
The main purpose of UDAP is to manage real-life assets with blockchain technologies, and to use
these technologies to increase their liquidity and thus enhance its permanent durability. At the same
time, one important goal of UDAP is to allow these real world assets in the form of crypto-assets to
be easily transferred between owners.

The first and foremost problem is the identity of the participants in the asset related transaction. For
real-world asset transfers, it may not be good enough to know only the account numbers. Because
the conversion of these assets may involve the requirements of the real identity, for example, a
contractual relationship established by the two sides through the asset network, if traceability is
important, then the identities of the parties have very clear requirements. The two parties to the
contract need to know each other very well, i.e., the individual that he/she wants to transact with. If
the contract have issues during execution, there are always ways for the contract party to track and
confirm the problem in the real world. Considering again that if the third parties' law enforcement
agencies are able to participate in this process, the identification of both parties to the contract is a
prerequisite for their participations.

Each application will determine how much they need to be aware of the identity of the user in the
real world. In more stringent cases, they may need to be fully aware of the ID of the user of the
application in the real world, his address, and his contact details. For example, a cryptocurrency
exchange may require users to submit their own proof of identity in real life, such as ID cards,
passport photos, and to verify their phone numbers and EMAIL addresses. Moreover, proof of their
places of residence may be required to be fully verified. In fact, this is the basic verification process

UDAP WHITEPAPER

Page 32 of 48

that most of the major crypto exchanges are conducting. Other applications may not have such KYL
requirements. They may just need to know the registered user's EMAIL address, or they are not
interested in knowing any of those information.

There are several types of identity management systems on the Internet:

• Fully centralized identity management system, such as citizen ID card system.
• Fully siloed authentication system, for example, each application has its own authentication

system.
• Federation Identity System: Internet applications that provide authentication for other

applications through OpenID, OAuth, or similar mechanisms. The provided process can add
user's confirmation of identity and additional property exposure.

• Self-Sovereign Identity Management.

Given that UDAP provides an open ledger service to third-party applications, we decide to adopt an
evolutionary path for UDAP to transition from a siloed identity system to a Self-Sovereign identity
system:

• A person's identity is provided by a third-party application. There is no abstract identity
outside of the application. That is, each application corresponds to a persona. UDAP does
not pursue as a single identity provider. The independence of application identity can provide
privacy protection and account security.

• Applications are responsible for user account setup. But the process to create a
public/private pair in creating an account on the chain is executed by UDAP and the private
keys are not supposed to be touched by the applications. Private keys are never stored in
applications. They must be kept in the mobile phone in an encrypted form.

• UDAP provides a key ring to securely store the private keys of the accounts in each of the
applications that a user choose to register.

• Private keys are mainly used to sign transactions initiated by a user, either from the
application plugins in UAW, or from standalone mobile apps.

In the second phase of UDAP Identity Management:

• UDAP provides a decentralized PKI interface (dPKI) to third party apps.
• UDAP integrates a Self-Sovereign identity system that allows users to have multiple

identities and have full control over the use of their identities across applications.
• Asset Wallet (UAW) provides Hierarchical Deterministic account creation and management

mechanisms.
• UDAP supports account recovery to prevent users from losing their identities if their devices

or passwords are stolen or lost.

We are looking closely at the development of some third-party identity management systems and will
consider the possibilities of integrating their services into UDAP network. These systems include (but
not limited to) uPort, ShoCard, Civic, Mooti, and others.

5.7. Secure Content Distribution
In many application, distributing content in the format of text file, pictures and audio/video files
protected by copyright is common and requires platform support.

UDAP WHITEPAPER

Page 33 of 48

In a blockchain based music store for example, each customer will get a special copy of a music file
while can be opened only with the cutomer's private key. It's also called blockchain-based DRM
(Digital Right Management).

UDAP employs Proxy Re-Encryption to make customized copy of media files, as shown in the
following diagram:

The above diagram is conceptual, while the real implementation is lot more involving, including
mechanisms to prevent node collusion. We will have separate document for this feature.

6. Universal Asset Wallet
As a very important part of the platform, wallet plays a key role in the interaction between
applications and users.

The usual crypto-wallets are a single-function wallet that shows the amount of particular
cryptocurrencies.

As a general-purpose assets wallet, UAW's role has been significantly expanded. Think of it as a
personal safe on one's cell phone. It can contain any stuff you would put in a safe, such as
certificates, important documents, diamond rings, antiques, securities, IOUs, etc. In fact the asset
wallet stores the unique tokens that cryptographically represent the assets. These asset-backed
tokens are created by various applications running on the UDAP chain.

Moreover, UDAP Wallet supports assets in different level of scopes:

• asset on the Ethereum public chain (ERC721 and UDAP Singular style)
• asset in application state channels.

UDAP WHITEPAPER

Page 34 of 48

The asset in state channels can be "upgraded" to be certified by Ethereum, at a cost of gas
consumption.

The following diagram shows the concept of UDAP Wallet.

General Assets Wallets are more than just the storage of assets, but are also very handy for
supporting common operations on assets such as asset transfers, sales, trading, auctioning,
cancellation and more.

6.1. Asset From Third Party Apps
UAW is the user of the assets obtained in a variety of third-party applications. Each application has
its own unique user management system that generates user accounts that correspond to a unique
account on the blockchain, with the help of UAW. Obviously account will not be shared or reused
among applications.

An account has security significance and identity only in the context of third-party applications. The
purpose of doing so is to ensure that the user's privacy. In this context, a wallet, in fact, must import
the assets from each application. After the account is imported, the assets of the corresponding user
in the third-party application are displayed in the general-purpose assets wallet in different groups.
Users can interact with the asset in a generic way, such as transferring, submitting to markets,
auctioning and sending copies to third parties.

6.2. Personal Assets
UAW not only imports assets from third-party applications, it also allows users to create personalized
digitally encrypted assets directly in the wallet. In fact this feature is also an application from the
architectural point of view.

One scenario is that users can create IOUs. The purpose of IOUs in daily life is to show that a
person owes a particular piece of asset to another person and he/she promised to return/pay back at

UDAP WHITEPAPER

Page 35 of 48

some time in the future. People used to write down IOUs on a piece of paper. Now UDAP client
gives users an easier and securer way to write Crypto-IOU, with support of voice, pictures and even
videos, tamper-proof and irrefutable, no worry of loss.

In the process of personal loans or IOUs, one can also use the wallet to conduct multi-sig signing.
For example, in the process of creating an IOU, a third-party witness may be required to witness the
contract. The borrower can send the original IOU to the witness, who then signs it and sends it to the
creditor.

User can even introduce the [guarantor] role. Unlike the [witness], the guarantor has to assume the
corresponding obligation of security if the debtor can not execute the contract in the agreed time for
debt repayment, then the guarantor must bear the repayment obligations.

In summary, crypto-IOU is extremely powerful.

 a. Saving notarization and costs b. Very convenient to keep safe c. Personal debt can
further be traded.

In other scenarios, a user of UAW can register any personal belongings through the description of
words or pictures or videos. Once tokenized, the person belongings can enter a market for trade.

6.3. Debts
UAW manages assets in the financial sense while also managing liabilities, or "negative assets."

Often times, what we mean by assets is something that is valuable to ourselves. In many scenarios
though, we not only need to know how much assets we owns, we also need to manage liabilities and
the reimbursement requirements and conditions for those liabilities.

The most common example of "negative assets" is the various types of "utility bills" that arrive on a
monthly basis: water / electricity / gas / telephone bills.

Of course there needs to be an application that connects the utility companies to UAW. Once we
have it, users can use the wallet to pay directly in the UAW, or the user can ask someone else to
pay for them.

Universal Asset Wallet is a very powerful tool for everyone to manage their finances. Not only can it
handle some of the personal lending activities of everyday life just as it is, it can also be used by
small businesses such as family hotels or family restaurants as a tool for offering discount coupons
or vouchers.

6.4. Multi-Sig Support

UAW supports multi-sig transactions.

When a transaction is made and requires multiple signatures, UAW will send a message to the
appropriate signer's wallet and prompts the designated signer to review the transaction details and
then "agree" or "reject" the transactions.

The UAW message queue presents the list of transactions that need to be signed. The history of the
signatures will also be preserved.

Initiation of the transaction can be from another UAW user, or from a UDAP-enabled application.
This is very convenient for third-party APPs, since they do not need to build their own multiple-
signature workflow.

UDAP WHITEPAPER

Page 36 of 48

6.5. App Store
UAW is a powerful and extensible plug-in architecture, and its main purpose in fact is to support a
large number of third-party apps that can generate a wide range of assets. It provides a unified user
experience integration with UDAP's ability to provide background integration for third-party apps. The
plug-ins for these clients constitute the ecology of the entire Asset Internet. All third-party
applications appear in the App Store of the UAW for the users to choose from.

Technically UAW is a hierarchical architecture, and a considerable part of the user experience has
been built in the UAW. Applications from third-parties range from ticketing, memberships, financial
assets, health records, academic records, IOUs and crypto-contracting.

Not all third-party applications provide a UAW plug-in. An App can have its own native app, or a web
application.

UAW is an eco-system. It provides a programmable UI for third-party applications to develop a
complete user experience. The UAW itself provides a series of built-in features that save the time it
takes for a large number of third-party applications to reach their own user base.

1. Simple Asset Transfers: Users are like sending emails, or as usual Crypto Currency.
Encrypted assets are sent from one account to another.

2. Obtain permission to transfer: In order to prevent the rubbish assets from flooding wallets,
users can set to require other parties to obtain permissions to send any transfers.

3. Ticketing: This is the deliver tool that comes with the UAW. Event tickets are in fact the
promise of services provided by asset issuers who will deliver the final product or service
within a certain period of time. The redemption process is actually transferring the tokens
back to issuer.

4. Market: UDAP comes with market tools for asset owners to sell their assets.

5. Multiple Signatures support.

UDAP WHITEPAPER

Page 37 of 48

UAW offers JavaScript APIs for third-party application developers. Some of the functions are as
follows:

1. getCurrentUser: Get the current user's identity information, including the chain address.
2. getAssetCollection: Get the current user's list of assets.
3. initTransfer�Transfer specific assets. Activate UAW's multi-signature mechanism if asset

transfer requires multiple signatures.
4. offerToSellInMarket�Offer to sell an asset in the market.

More API will be provided in the future, including various auction methods, escrowed P2P
transactions and decentralized exchanges.

7. Implementation
We would like to discuss some of the implementation details.

7.1 Protocol Implementation
As mentioned before, UDAP at the highest level is a conceptual model of real-world assets. The
following section provides the descriptions of the ongoing implementation of the model. It may
change as the development work moves along.

UDAP addresses are divided into account address, asset address, and assetProto address. Where
account represents the actual account of the user, organization, service provider, etc. Asset
represents an asset, AssetProto is a prototype of a type of asset, and an asset must be associated
with an asset prototype in a one-to-one correspondence.

These three types of address have a versionHash and lastCommitTimestamp property. VersionHash
represents the changing status of this address. Each change of an address will generate a new
random and never duplicated versionHash value. The lastCommitTimestamp will record the last
point in time when an address was received after the transaction was processed.

UDAP transactions are always

A transaction usually includes the following data

• The originator of the transaction
• Recipient of the transaction
• The method of trading
• Trading method parameters
• The digital signatures required for the action
• versionHash, optional transaction acceptor versionHash.

The originator of the transaction must be an account address, and the recipient of the transaction
can be an asset address or an assetProto address.

When the UDAP accepts the transaction, the rule matcher verifies whether the signature is of the
transaction request, whether the signature is out of date, whether the signature time is later than the
lastCommitTimestamp of the transaction acceptor, and if the versionHash of the transaction
acceptor is given if the versionHash is given Given conditions and all legitimate signers would meet
the signature rule. If so, UDAP API then accepts the transaction request to complete the operation
and generate a new versionHash.

UDAP WHITEPAPER

Page 38 of 48

The signature includes the time of signing, the signature's validity period, and the versionHash that
may contain the current asset. When the app collects enough required signatures, it initiates the
transaction to UDAP, which verifies that the provided list of signatures satisfies the rule by
interpreting the method parameters. If so, it changes the state of the asset, generate a new
versionHash and record the latest lastCommitTimestamp in all signatures as the signature is for the
transaction method parameters. UDAP creates an optional versionHash and lastCommitTimestamp
Time guarantee to prevent replay attack. VersionHash transaction request and digital signature are
optional. It is designed to ensure that the asset data will not be phantom read, similar to what
optimistic locking does. Whether you need to verify that versionHash is in the hands of the originator
of the transaction.

7.2. State Channels
UDAP does not try to be a generic State Channels framework, like counterfactual or Perun. Instead,
UDAP is an implementation of State Channels that are tailored to the applications that deal with non-
fungible assets.

UDAP provides a set of enforcible contract templates that can be deployed on demand, such as
contracts that covers "buy", "swap", "split", "rent" and "pledge". We also provides templates for state
channels in a hub-spoke topology, which is the majority of application model.

More implementation will be available in later version of this document.

7.3. Performance
Performance in UDAP comes from two layers of support:

1. The core of public chain. In the case of Ethereum, layer 1 technologies such as POS and
sharding will bring the throughput of the entire chain to the hundreds/thousands TPS in the
next year or two.

2. Layer 2 technologies such as Plasma can increase the general throughput further up to
millions TPS.

State Channels is also a type of layer 2 technologies, which is the most practical answer to the
scalability challenge.

We are going to explore COSMOS and Tendermint as another public chain provider in addition to
Ethereum once they become stable.

7.4 Privacy Protection
State Channels provide a good level of privacy if the states are kept in the channel scope. Using
state channel helps asset privacy in two ways:

1. The current state is only visible in the application and the application can employ all sorts of
ways to protect privacy.

2. The transaction history is never revealed out of the application scope, even when the users
have updated the state repository on the chain, since the user will update the state repository
with the latest statement only. The transaction between state updates are never revealed on
chain. Hiding the transaction log makes asset tracing vis log analysis impossible.

UDAP WHITEPAPER

Page 39 of 48

On top of the channel scope is the blockchain scope. The higher the scope, the more challenge on
keeping asset private. In the "worst" case of every transaction hitting the chain, we employ two
approaches to protect data confidentiality:

1. Asset ownership obfuscation. In the case of Singular and OwnerOfSingulars, all the
addresses associated with owner and singular tokens must be encrypted.

2. All the ownership transfer transactions must be mixed up with other transactions to remove
the transfer traces.

We will share our design in later versions of this document.

7.5 Key Rings and Identity
Today’s cryptocurrency wallets put too much burden on end users in managing their
accounts/passwords. People feel so much pressure in keeping the account credentials in safe place
and in the meantime still feeling convenient to use them.

We believe a key ring technology similar to Apple’s iCloud key ring is required to make a first class
secure experience with the asset wallet. UDAP Key Ring should:

• Have a single lock key to protect all the accounts/passwords.
• All the private keys must not be saved to the network.
• Two factor authorization must be tuned on. UAW will provide TFA service to all the

applications registered with UDAP.
• In case of password loss, a combination of email and cell phone is required to recover the

parent account with UDAP.

User accounts are application specific. Any account is associated with an app. Different apps don’t
share accounts. But account registering needs the help from the Universal Asset Wallet, for absolute
security.

Private keys are created in the UAW. They never should be exposed to applications. Once the
public/private key pair is created, the public key is presented to the application's account creating
process which may require more information from the users. The private key is encrypted and stored
in UAW key ring.

Each application must repeat the above process to acquire new customers. A UAW user will have as
many identities as the number of applications he/she uses.

7.6 Data Storage Strategy
Every transaction on the blockchain incurs a fee. This is partly due to the fact that the public
blockchain is a public support resource, which requires some incentive mechanism to encourage the
voluntarily provision of public blockchain computing and storage infrastructure. On the other hand,
transaction fees can greatly limit any malicious attacks on the blockchain network, because such
attacks are economically unrealistic. So while we believe the transaction costs on the blockchain will
decrease dramatically with the performance improved and scalability issues of the blockchain
resolved, as a decentralized asset chain on which, the entire lifecycle of assets is required to be
managed, it is impossible for us to store all the data related to managed assets on the blockchain.
Therefore, an important architectural decision is what kind of data needs to be stored on chain and
what kind of data needs to be stored off-chain. Such an architecture decision needs to be
considered in many aspects such as context, processes, costs, performance, and realizability.

UDAP WHITEPAPER

Page 40 of 48

From the perspective of business, costs, and performance, blockchain is not suitable for storing
frequently updated data and large volume of data. Any changes to the data may trigger commitment
of transactions and data replication on each node. Through the analysis of the on-chain asset model,
we believe that the basic attributes and the metadata of assets can be separately stored. The basic
attributes and transaction data of asset management are stored either on the blockchain while the
metadata is stored off-chain. For example, for a Multiple Listing Service (MLS) in the real estate
industry, metadata about a property such as description and pictures are stored on cloud storage or
P2P storage, however, owner information and transaction history are stored on the blockchain.
Therefore, a UDAP full node has two logically isolated "nodes" (a blockchain node that stores
transactions and assets, and a storage node for asset metadata storage). Assets have access to
their related metadata via merkle-link. Application developers don't have to understand where the
data are stored.

In general, there are two options for metadata storage: a centralized cloud storage such as Amazon
S3 and a decentralized P2P storage like Swarm, IPFS, StorJ, or MaidSafe. Both options have their
own advantages and disadvantages, but for an asset of great economic value, it may be more
reassuring to have a decentralized storage that does not rely on any centrally managed storage
services. Although UDAP prefers a decentralized storage to offer a comprehensive decentralized
service with a decentralized computing infrastructure, this protocol does not directly define a physical
P2P storage technology. It only requires the data is presented as merkle-link and merkle-dag, so
that the application can address and query any relevant data via merkle-path. This merkle-link
represents a link between two objects, which maps the cryptographically hashed values of the target
object's content to the source object, and therefore allows us to get the target object through this
link. This approach has at least four advantages.

• data can be easily presented in JSON-LD format
• data encryption and integrity check are supported
• data is immutable
• data is addressable through merkle-path

These advantages are particularly well suited for the management of asset metadata, as most
metadata items are static and descriptive data with few changes over the life of an asset. And in
many scenes, once metadata is uploaded to storage it is not allowed for modification, for example,
university diploma, license agreement, and contracts and so on. Even a slight change on the
metadata will lead to an obvious change of the hash value of the metadata. Therefore either the
hash value on the blockchain needs to be updated, or a naming service such as IPNS is required as
a tag of the metadata. The former needs to submit a transaction on the chain, which incurs a small
amount of costs. The later needs to introduce a new level of data abstraction. In either case it is
transparent to applications. Services provided by UDAP allow application developers to completely
ignore the underlying storage logic and operate directly on assets.

In addition to asset metadata, applications often have large volume of business data that are usually
stored in their own databases. While decentralized storage may not be a good place for storing large
volume of frequently changed business data, from the application point of view, many business
systems need to adopt a hybrid storage model through careful data analysis. Business systems
need to put some of their data on the chain (including decentralized storage). Meanwhile, business
systems also serve as off-chain Oracles that provide data services to smart contracts. For example,
in the case of warehouse receipts as collaterals in supply chain finance, after warehouse receipts
are registered as crypto assets, their market values are calculated by smart contracts with real-time

UDAP WHITEPAPER

Page 41 of 48

price data obtained from business systems or third-party Oracles via Oraclize[20] service. The price
data is then signed and recorded on the decentralized storage as a basis for future value verification.
The following is an example of an infrastructure deployment view from one of our demos, where
xncang is a business system that manages warehouses and inventories, which connects to a PoC
blockchain via an API gateway.

UDAP WHITEPAPER

Page 42 of 48

8. Related Work

UDAP WHITEPAPER

Page 43 of 48

The year of 2018 is an important year for non-fungible crypto assets. The world is in a transition from
cryptocurrencies to crypto assets. A lot of efforts have been done to make this transition into reality.
We have reviewed related blockchain projects and summarized our key findings as follows:

BankEx is a blockchain project that targets financial asset management and offers "Bank as a
Service" cloud service. This project builds permissioned blockchains on Ethereum and creates smart
contract based static asset model. New asset types are manually registered through a centralized
approval mechanism.

Digix is a blockchain project specialized in tokenization and trading of gold. It uses gold as collateral
to create crypto gold. It creates "recast" concept adopted by UDAP to handle redemption of physical
goods or services.

AChain [19] is a platform that offers token issuance, smart contracts, and Dapps development. It
creates a multi-chain architecture through a forking mechanism.

Bytom [20] is an exchange protocol for diversified byte assets that uses POW as a consensus
approach, supports limited asset types and mainly focuses on the financial aspect of the assets (in
other words, tokens without asset metadata).

0x Project [21]is a decentralized exchange for cryptocurrencies. It has a very interesting exchange
model that UDAP may adopt to create a C2C exchange for assets.

Bitshares [22]is an exchange for trading cryptocurrencies and assets. It is a permissioned blockchain
with a single chain architecture.

WAX is a marketplace for virtual game assets exchange and trading.

MediaChain is a singular data fabric for open-first media applications. It is a decentralized
blockchain for applications and users to publish, discover, and collaborate on media metadata. It is
built on Ethereum and IPFS.

Counterfactual is a generalized framework for native state channels integration in Ethereum-based
decentralized applications. They may also provide pre-audited modules for developers to adopt.

Perun is a framework that supports off-chain protocols for simple payments and generic smart
contract off-chain execution. Perun's channels can be virtual, which means that off-chain
transactions do not require interaction with intermediaries thereby further reducing trust, latency and
costs. In additional Perun offers strong security guarantees backed up by scientific methods from
cryptographic research

Nucypher helps dApp developers store, share, and manage private data on public blockchains with
decentralized proxy re-encryption as a service.

We have also reviewed and researched a few key blockchain projects that focus on multi-chain
architecture with inter-blockchain communication. These projects include Plasma, Polkadot, Aion
Network, Wanchain, and Cosmos.

9. Use Cases
Most of the Internet applications deals with data. Most of the informational data contains intrinsic
values to the data owner hence is valuable asset to the owners.

UDAP WHITEPAPER

Page 44 of 48

UDAP can be immediately used to upgrade those applications to a blockchain-based decentralized
model and bring incredible new user experience to the customers. The following use cases just
scratch the surface and are by no means exhaustive.

9.1 Event Ticketing
This use case includes performances, live shows, sporting events, ticket management for various
gatherings.

A third-party event ticketing platform that focuses on ticket issuance, distribution and marketplace
services. It is often the case that event ticket holders may not be able to attend a event for whatever
reason, and that they need to be able to transfer the tickets to others in the best way possible. In the
opposite direction, some people may have missed the ticket sale event and thus lose a reasonable
and convenient way to get tickets for the event. Indeed this type of assets lacks a convenient
secondary market. The performance market is still a relatively good market, because in private,
scalpers play a liquidity role. Though not through a formal channel, they indeed improve the liquidity,
help balance the supply and demand and consequently receive reward.

By tokenizing event tickets, tickets can be easily sent to or transferred among friends, or put on a
secondary market through UAW for resale. In the process of trading, the original issuer can put
control over the trading frequency, liquidity, and price range. They can also set restrictions on
whether an asset is allowed to be resold or transferred. This provides an extremely handy feature for
ticket management apps with unparalleled security and liquidity. Our universal asset wallet (UAW)
can be used directly to execute operations such as ticket transfer, trading or on-site check-in, which
are common to concerts, movies, and other types of events.

9.2 Brand Valuation
In the crypto world, people are gradually realizing that tokens are a brand new economic model. The
essence of tokens is actually to digitize all kinds of accessible and inaccessible assets in the real
world and to manage them with cryptographic and blockchain technologies. Tokens corresponding
to these assets can make full use of the high liquidity brought by blockchains and cryptocurrency
exchanges to form a brand new token economy. One of these very innovative ideas is the
emergence of a new possibility for everyone to issue tokens that represent their reputation and
brand. Imagine that in the future, everyone will be able to issue their own crypto currency which is
backed by their personal image and reputation, credibility, and promises. This type of tokens
represents some kind of credit and commitment individuals make to the world and other people.
Because of the liquidity of tokens, values of individuals can be more accurately represented. With
the support of our platform, individuals can easily build their fan clubs and control issuance and
distribution of membership cards. Those who can provide services could tokenize their services and
issue tokens for trading on the market. When demands for their services change, the value of their
tokens changes accordingly. This scenario offers an unprecedented possibility of fullfillment and
customer satisfaction.

9.3 Supply Chain Finance
Nearly 82% of businesses fail because of cash-flow problems, however, the complexity and scale of
existing supply chain finance (SCF) solutions has posed major challenges in ensuring adequate
funding and efficient operations. Finance instruments in SCF include factoring, reverse factoring,
payables financing, inventory finance, and dynamic discounting. The following figure illustrates the
transaction flow of a typical inventory finance solution (source from Global SCF Forum)

UDAP WHITEPAPER

Page 45 of 48

UDAP will essentially enable all parties in SCF solutions to act on a shared ledger, where suppliers
and manufacturers, along with every other participant, will solely update their parts of the
transaction, enabling efficiency and an “unprecedented” level of trust and transparency on a ledger
record that is immutable.

9.4 Marketing and Promotions
In the retail industry, cash vouchers, discount coupons, membership vouchers and promotional
certificates can all be tokenized for monetization to create a more convenient and more liquidity
asset. With the support of UDAP, these assets from different issuers can be easily exchanged,
traded, transferred, and redeemed. Like event tickets issuers can also set resale rules on the crypto
assets to protect or increase their interests.

9.5 Sharing Economy
UDAP enables businesses to quickly build decentralized marketplaces on the blockchain for a
sharing economy. Buyers and sellers of decentralized "airbnb" or "uber" like car-sharing or home-
sharing could transact on a decentralized and open platform without traditional intermediaries. All
facility sharing rules are transparent to customers. A decentralized arbitration mechanism resolves
disputes fairly and grow a network of mediators through incentives. In some scenarios, reservations
can become assets. When buyers have to cancel the bookings for some reasons they may face
penalties at present, however, with UDAP it is possible for buyers to resell their reservations on the
marketplace to reduce loss.

9.6 Game Assets
Black markets exist for exchange and trade of digital assets (e.g. equipment, resources, accounts,
points) in all kinds of e-sports games. Game developers may be reluctant to allow the players to
freely trade the game equipment and resources, so that players have to obtain new equipment and
resources through in-game purchase. However, there are quite a few games realizing that providing
an open marketplace for game props is a way to enhance the user experience, attract more users,

UDAP WHITEPAPER

Page 46 of 48

and increase revenues via the resell of game resources. UDAP offers APIs that enable game
developers to register certain types of crypto assets they issue and manage the trading rules for
those types in trading and exchange. At the same time, the ecology of asset trading conforms to the
dynamic model expected by game designers.

9.7 Arts and Collectibles
Spot trading of collectibles is a very promising application of our asset management network. Our
platform not only provides basic computing functions, but also the file storage and multimedia
storage capabilities required for the preservation of art collection information. Therefore, all kinds of
digitization, encryption and tokenization required in the circulation of artwork can be used to directly
manage the trading. There are two main types of transactions that existed in the past: antique and
art shops with direct acquisitions from individuals, which then offered to consumers for purchase. In
addition, A trading model takes place in the private, free-market model where art owners and
potential buyers make deals directly; a common selling model for art is the auction model because
artwork is usually an asset of insufficient liquidity and lacking consensus on its pricing. The trading of
art work is sometimes used for money laundering and improper business activities. Blockchain
technology will help eliminate frauds and provide traceability and authenticity guarantee with a
flexible transaction model.

9.8 ICO
UDAP supports applications to issue their own tokens as utility tokens for exchange of services or
application specific base coins for asset pricing. The application tokens can be exchanged with other
tokens. This will help transform business into a token economy.

10. Conclusion
Capital market is an engine for economic growth, both for business entities and individuals.
Monetization is the main way to profit from the economy.

In the next few years, world economy will be reshaped greatly by token-based businesses. The
nature of the "universal assets" that we are advocating here is to store and to realize the value of the
assets.

Blockchain supports permanent retention of asset information through its tamper-proof feature. In a
sense, it is the permanent proof of assets.

At the same time, the blockchain-derived token economy and the liquidity as the core of the token
economy provide the key channel for the value recognition of assets.

The relationship between liquidity and the health of the entire industry is like a human blood
circulation system and human health. Much of what is studied in economics as a whole is actually
about how to improve the liquidity of a local system. Although trading liquidity is frequently over-
estimated, which is referred as "liquidity illusion", a closer look at various industries around us
reveals that lack of liquidity is almost always a continuing challenge for all industries. Even if we are
already satisfied with current liquidity provided by a system, at a higher level and in the future, this
liquidity may become inadequate again. So in current reality, increasing liquidity is always of
importance.

Liquidity is not a panacea. In fact, liquidity itself may also bring system instability and even harm.
Just like our blood circulation system, smooth blood circulation does not mean that there is no
control of blood circulation. Therefore, controlling and optimizing liquidity throughout the market is
actually the second challenge for asset owners.

UDAP WHITEPAPER

Page 47 of 48

Many industries face a big challenge that asset issuers lack control over liquidity of assets. In the
past there was no good solution to this problem, but with the advent of distributed ledger
technologies we are able to overcome this challenge for the first time.

This white paper is about an ongoing project claiming having the power of "tokenizing anything",
which we are trying to make our unique contribution in three main technology areas:

• Blockchain-based Asset Lifecycle Management, with a unique "everything has an account"
model of world assets, in the name of "Singular"

• State-channels based layer-2 scalability solution
• Decentralized C2C Exchange for Assets
• UDAP Wallet, a universal asset management tool for the best possible UX.

UDAP offer exceptional values to application developers and public chains alike. Together we are
going to create a fast-growing eco-system where everything is tokenized and innovative applications
will emerge at scale to fulfill the promise of blockchains.

References
[1]: http://www.omnilayer.org/

[2]: https://counterparty.io/

[3]: https://prism.exchange

[4]: http://unchainedpodcast.co/vitalik-buterin-creator-of-ethereum-on-the-big-guy-vs-the-little-guy

[5]: https://www.comp.nus.edu.sg/~loiluu/papers/oyente.pdf

[6]: https://theinternetofmoney.info

[7]: https://github.com/ethereum/wiki/wiki/Design-Rationale

[8]: https://blog.ethereum.org/2018/01/02/ethereum-scalability-research-development-subsidy-
programs

[9]: http://docs.mediachain.io

[10]: https://digix.global

[11]: https://bankex.com/en/whitepaper

[12]: https://www.cmswire.com/cms/digital-asset-management/the-building-blocks-of-digital-asset-
management-interoperability-021996.php

[13]: https://www.ibm.com/developerworks/cloud/library/cl-adopting-blockchain-for-enterprise-asset-
management-eam/index.html

[14]: https://ipld.io

[15]: https://json-ld.org

[16]: http://www.localbitcoins.com

[17]: http://cosmos.network

UDAP WHITEPAPER

Page 48 of 48

[18]: http://www.oraclize.it

[19]: https://www.achain.com

[20]: http://bytom.io

[21]: https://0xproject.com

[22]: https://bitshares.org

